- homological codimension
- мат.гомологическая коразмерность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Classification of manifolds — In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain. Contents 1 Main themes 1.1 Overview 1.2 Different categories and additional… … Wikipedia
Adequate equivalence relation — In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well working theory of such cycles, and in particular, well defined… … Wikipedia
Georges de Rham — Born 10 September 1903(1903 09 10) Died 9 October 1990(1990 10 09) (aged 87) … Wikipedia
Linear system of divisors — A linear system of divisors algebraicizes the classic geometric notion of a family of curves, as in the Apollonian circles. In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of… … Wikipedia
Algebraic cycle — In mathematics, an algebraic cycle on an algebraic variety V is, roughly speaking, a homology class on V that is represented by a linear combination of subvarieties of V . Therefore the algebraic cycles on V are the part of the algebraic topology … Wikipedia
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Algebraic K-theory — In mathematics, algebraic K theory is an important part of homological algebra concerned with defining and applying a sequence Kn(R) of functors from rings to abelian groups, for all integers n. For historical reasons, the lower K groups K0 and… … Wikipedia
Localization of a category — In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in… … Wikipedia
Atiyah–Bott fixed-point theorem — In mathematics, the Atiyah–Bott fixed point theorem, proven by Michael Atiyah and Raoul Bott in the 1960s, is a general form of the Lefschetz fixed point theorem for smooth manifolds M , which uses an elliptic complex on M . This is a system of… … Wikipedia
Bass–Serre theory — is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated… … Wikipedia
David B. A. Epstein — Not to be confused with David Eppstein. David Epstein at the Warwick Mathematics Institute in December 2009. David Bernard Alper Epstein FRS (b. 1937[1]) is a mathematician known for his work in hyperbolic geometry, 3 manifolds, and … Wikipedia